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SUMMARY

A wetting–drying condition (WDC) for unsteady shallow water �ow in two dimensions leading to
zero numerical error in mass conservation is presented in this work. Some applications are shown
which demonstrate the e�ectiveness of the WDC in �ood propagation and dam break �ows over real
geometries. The WDC has been incorporated into a cell centred �nite volume method based on Roe’s
approximate Riemann solver across the edges of both structured and unstructured meshes. Previous
wetting–drying condition based on steady-state conditions lead to numerical errors in unsteady cases
over con�gurations with strong variations on bed slope. A modi�cation of the wetting–drying condition
including the normal velocity to the cell edge enables to achieve zero numerical errors. The complete
numerical technique is described in this work including source terms discretization as a complete and
e�cient 2D river �ow simulation tool. Comparisons of experimental and numerical results are shown
for some of the applications. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many engineering and environmental problems involve the study of water �ows. Free surface
�ow includes large scale motion of water in rivers which is characterized by the presence of
a free surface and by a vertical scale much smaller than the horizontal one, hence commonly
modelled as shallow water �ows. River �ows are mostly unsteady and can be described by
the shallow water model [1] which form a set of non-linear hyperbolic equations. A great
amount of literature exists describing 1D and 2D numerical models and various computational
techniques using �nite di�erence, �nite element and �nite volume methods to obtain the
satisfactory solution of unsteady river �ow problems [2–4].
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The accurate prediction of �ows in a river such as caused by �ood events, dam break,
etc. is important because of the huge impacts on property, human life and environment.
Several numerical di�culties must be adequately treated to obtain an accurate solution without
numerical errors. Zhao et al. [5] provided a good historic revision and the features required
for a 2D river �ow simulation model: it must be able to handle complex topography, dry
bed advancing fronts, wetting–drying moving boundaries, high roughness values, steady or
unsteady �ow and subcritical or supercritical conditions.
Natural topographies involve positive and negative bed slopes that can be steep in many

places (mountainous areas) and abrupt banks. The presence of extreme slopes, high roughness
and strong changes in the irregular geometry represent a great di�culty that can lead to
important numerical errors presumably arising from the source terms discretization [6, 7] and
the treatment of the wetting–drying fronts.
Flow over dry bed involves a complicated boundary condition which is dynamically chang-

ing in time with the moving front and continuously expanding or reducing the �ow domain.
Akanbi and Katopodes [8] gave a brief summary of problems encountered in the numeri-
cal simulation of �ood waves propagating over dry bed. This is related to a theoretical and
numerical di�culty because the shallow water system of equations loses its properties at
h=0 [8].
On the other hand, there has been little amount of research devoted to numerical treatment

of the wetting and drying boundary. Flooding and drying arises in a wide range of free surface
hydraulic problems, such as tidal �oods, dam breaks and overland �ow of precipitation. Cells
being �ooded or dried during the computation tend to introduce numerical instabilities in the
solution, resulting for example in negative water depths or unphysical high velocities. Hence,
di�erent techniques have been proposed to handle it. These techniques include deformable
computational meshes, modi�ed equations in very shallow regions [9], and shock capturing
schemes [10] considering that a cell is dry if water depth is below a small critical value (2cm)
[11]. Be�a and Connel [12] reported numerical oscillations when cells switch from dry to wet
or vice versa. George and Stripling [13] represented the local bathymetry in each cell by a
sloping facet rather than by a �at bed to eliminate the spurious shocks in their �nite volume
model. Some authors working with �nite elements solve the problem allowing the controlled
use of negative depths [14–16]. Bradford and Sanders [17] use Neumann extrapolation of the
velocity in partially wet cells to bypass the incorrectly estimation of pressure and body forces
in such cells.
Apart from the numerical stability, global mass or volume conservation is greatly af-

fected by the careless treatment of the wetting=drying boundaries. There is a need for more
work on model development for large scale complex natural river and �ood plain �ow
simulation.
In a previous work, a 2D model was presented for unsteady �ow simulation based on

an explicit upwind �nite volume method. Working on unstructured meshes, it was suitable
for discontinuous and mixed �ow regimes. The wetting=drying problem was included from
a still water steady-state approach [18] and the requirement of exact mass conservation at
the discrete level. Numerical error was still detected in presence of general situations. The
objective of this work is to investigate in more detail the requirements linked to discrete mass
conservation at wet=dry interfaces for all kind of situations. The analysis will be presented
in the context of the upwind method used and applied to show the performance of the new
approach.
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2. MATHEMATICAL MODEL: 2D SHALLOW WATER SYSTEM OF EQUATIONS

Fluid �ow is governed by mass conservation, Newton’s second law and energy conservation.
All these principles can be expressed in mathematical equations, in the form of partial deriva-
tives. A very common hypothesis is the hydrostatic approximation valid for long waves (small
vertical accelerations). When the horizontal direction is much greater than the vertical one, the
mathematical model can be simpli�ed averaging the 3D Navier–Stokes system of equations
in depth and the problem is converted into a bidimensional one (2D shallow water model).
This model describes appropriately some free surface problems. The shallow water system
of equations is similar to the Euler system of equations that governs inviscid compressible
�ow in gas dynamics. Compressibility is equivalent to free surface deformability and Mach
number is equivalent to Froude number. This property justi�es the use of the same numerical
techniques to solve the two systems of equations.
Neglecting di�usion of momentum due to viscosity and turbulence, wind e�ects and the

Coriolis term, the 2D shallow water form the following system of equations:

@U
@t
+
@F(U)
@x

+
@G(U)
@y

=S(x; y;U) (1)

in which,

U= (h; qx; qy)T

F=
(
qx;
q2x
h
+
gh2

2
;
qxqy
h

)T

G=

(
qy;
qxqy
h
;
q2y
h
+
gh2

2

)T

where qx= uh and qy= vh are the unitary water discharges in x and y directions, respectively.
The variable h represents the water depth, g is the acceleration of gravity and (u; v) are
the depth averaged components of the velocity u=(u; v) along the x and y co-ordinates,
respectively. U represents the vector of conserved variables and F, G the �uxes associated
to the conserved variables in both directions x and y. The source terms in the momentum
equation (S) are the bed slopes and the friction loses along the two co-ordinate directions,

S=(0; gh(S0x − Sfx); gh(S0y − Sfy))T

where

S0x=−@z
@x
; S0y=− @z

@y

and the friction loses in terms of the Manning’s roughness coe�cient (n) [19]

Sfx=
n2u

√
u2 + v2

h4=3
; Sfy=

n2v
√
u2 + v2

h4=3
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δΩ

n

Figure 1. Details of a computational cell (�nite volume � and surface surrounding the volume @�).

It is useful to rewrite (1) as

@U
@t
+B · E(U)=S(x; y;U) (2)

in which E=(F;G)T is the �ux tensor, in order to introduce the integral form of the equations
over a �xed volume �,

@
@t

∫
�
U d� +

∫
�
(B · E) d�=

∫
�
S d� (3)

In the 2D approach presented in this work, the spatial domain of integration is covered by a
set of quadrilateral or triangular cells, not necessarily aligned with the co-ordinate directions. A
discrete approximation to (3) is applied in every cell �i so that the volume integrals represent
integrals over the area of the cell with the dependent variables represented as piecewise
constants and the surface integrals represent the total �ux through the cell boundaries. Denoting
by Ui the average value of the conservative variables over the volume �i at a given time, from
(3) and applying Gauss theorem to the second integral the following conservation equation
can be written for every cell (Figure 1):

@Ui
@t
Ai +

∮
@�i
(E · n) ds=

∫
�i
S d� (4)

where Ai is the area of the cell �i.
The Jacobian matrix, Jn, of the normal �ux (E · n) is evaluated as

Jn=
@(E · n)
@U

=
@F
@U

nx +
@G
@U

ny (5)
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and can be expressed as

Jn=




0 nx ny(
gh− q2x

h2

)
nx − qxqy

h2
ny

qy
h
ny +

2qx
h
nx

qx
h
ny

(
gh− q2y

h2

)
ny − qxqy

h2
nx

qy
h
nx

qx
h
nx +

2qy
h
ny




The eigenvalues of Jn are a representation of the characteristic speeds

�1 = unx + vny + c

�2 = unx + vny

�3 = unx + vny − c
(6)

where c=
√
gh is the celerity of the small amplitude surface waves.

The corresponding eigenvectors are

e1 =




1

u+ cnx

v+ cny


; e2 =




0

−cny
cnx


; e3 =




1

u− cnx
v− cny


 (7)

From its eigenvectors, two matrices P and P−1 can be constructed with the property that
they diagonalize the Jacobian Jn

Jn=P�P−1

where � is a diagonal matrix with eigenvalues in the main diagonal.

�=



unx + vny + c 0 0

0 unx + vny 0

0 0 unx + vny − c




The matrices which diagonalize the Jacobian have the form

P=




1 0 1

u+ cnx −cny u− cnx
v+ cny cnx v− cny


; P−1 =

1
2c




u · n+ c nx ny

2(uny − vnx) −2ny 2nx

u · n+ c −nx v− ny




and

�(E · n)=Jn�U=P�P−1�U=P(�+ +�−)P−1�U (8)

is the basis of the upwind method with �±=(�± |�|)=2.
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3. EXPLICIT FIRST-ORDER UPWIND NUMERICAL SCHEME

The main reason to choose a �rst-order upwind �ux and bed slope source term discretiza-
tion for the shallow water equations on unstructured meshes is due to the simplicity of the
numerical model, accuracy on the results and CPU time economy.
Upwind schemes are based on the idea of discretizing the spatial derivatives so that infor-

mation is taken from the side it comes. Hence, a sense of propagation is implied and these
techniques are well adapted to advection dominated problems. When source terms are present,
it has previously been shown [6, 20–23] that the �ux derivatives and the source terms have
to be discretized in a similar manner. The evaluation of �uxes and sources at the same local
state is important. The basic technique will be outlined next for completeness.
The local de�nition of an approximated �ux Jacobian, J̃RL, constructed at the edges of the

cells is exploited here. Formally it is analogous to Jn (5) but it is expressed in terms of
averaged quantities across a cell edge RL, associated to the normal direction n.
As suggested by Roe [24] the matrix J̃RL has the same shape as Jn but is evaluated at an

average state given by the quantities ũ=(ũ; ṽ) and c̃ which must be calculated according to
the matrix properties [25].
The possibility of splitting the diagonal form of the Jacobian and the approximated Jacobian

into positive (outward) and negative (inward) components has been used and is the basis of
upwind schemes. When solving cell by cell, only the incoming contributions are taken into
account and this is linked to the �̃− component due to the sign convention for the normal to
the cell. Hence, (4) can be discretized as follows:

Un+1i =Uni − �t
Ai

(
NE∑
k=1
(P̃�̃−P̃−1�U)k dsk

)n
i

+
�t
Ai

∫
�i
S d� (9)

where k represents the edge index of the cell �i, NE is the total number of edges in the cell
(NE=3 for triangles, NE=4 for quadrilaterals). The vector nk is the unit outward normal
and dsk is the length of the side.
Alternatively, it is very common in �nite volume techniques the de�nition and use of a

numerical �ux associated to every scheme. This is a convenient auxiliary quantity coming
from the control volume theory.
The evaluation of the numerical �ux used in this work derives from (9),

E∗
k · nk =(F;G)∗k · nk = 1

2[(F;G)R · n+ (F;G)L · n − |J̃RL|(UR −UL)] (10)

Note that subscript k will be omitted for the sake of clarity and the following discussion
is referred to the cell side k.
The approximate Jacobian matrix is not directly used in the actual method. Instead, the

di�erence in the vector U across the grid edge is decomposed on the matrix eigenvectors
basis as

�U=UR −UL =
3∑
m=1
�mẽm (11)

and

|J̃RL|(UR −UL)=
3∑
m=1

|�̃m|�mẽm (12)
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where the expression of coe�cients �m are [25]

�1;3 =
hR − hL
2

± 1
2c̃
[((hu)R − (hu)L)nx

+((hv)R − (hv)L)ny − (ũnx + ṽny)(hR − hL)]

�2 =
1
c̃
[((hv)R − (hv)L − ṽ(hR − hL))nx

− ((hv)R − (hv)L − ũ(hR − hL))ny]

(13)

From the eigenvalues of J, those of J̃RL have form (6) satisfying the following entropy
condition:

if |�̃1;3|¡�1;3 → |�̃1;3|= �1;3 (14)

being

�1;3 = max(0; �̃1;3 − �1;3L ; �1;3R − �̃1;3) (15)

and the eigenvectors have the form (7), all in terms of average velocities and celerity. En-
forcing the second condition [25] of the matrix J̃RL the following expressions for ũ, ṽ and c̃
can be obtained:

ũ=
√
hRuR +

√
hLuL√

hR +
√
hL

; ṽ=
√
hRvR +

√
hLvL√

hR +
√
hL

; c̃=
√
g
2
(hR + hL) (16)

Expression (10) provides the numerical �ux normal to each edge of the computational cells
so that (4) becomes

Un+1i =Uni − �t
Ai

(
NE∑
k=1
E∗
k · nk dsk

)n
i

+
�t
Ai

∫
�i
S d� (17)

A cellwise numerical source, S∗, can be de�ned as an approach of the integral of the source
term

∫
�i
S d�.

An upwind approach adopted to model the bottom variations was presented by Brufau
et al. [18] and reproduced here for the sake of completeness. It ensures the best balance with
the �ux terms at least in steady cases. This procedure was studied in detail by Berm�udez and
V�azquez-Cend�on [6].
On the other hand, for every cell-edge k of cell �i the discrete source term, S̃k , is decom-

posed into inward and outward contributions

S̃k = S̃+k + S̃k
−

being

S̃±
k =

1
2 P̃(I ± |�̃|�̃−1

)P̃−1S̃k =
3∑
m=1
�m±ẽm (18)
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For every cell �i the total contribution of the edge source terms to the cell source term, S∗,
is made of the sum of the parts associated to inward normal velocity at every edge k

S∗=
∫
�i
S d�=

NE∑
k=1
S̃−
k dsk

The expressions for the �− coe�cients are

�1−;3− = ± 1
4c̃
(1− sign(�̃1;3))[ 	S2nx + 	S3ny]dRL

�2− =
1
2c̃
(1− sign(�̃2))[− 	S2ny + 	S3nx]dRL

(19)

where 	S2;3 are the second and third components of the vector of source terms 	S. Applying it
to the bed slope source term,

	S=




0

gh̃�zx

gh̃�zy



k

(20)

where h̃ consists of the average obtained from the depth values stored in the left and right
cell that share the same edge in each computational cell:

h̃= 1
2(hR + hL) (21)

and the bed increments in each direction are computed in the form

�zx=− (zR − zL)
dRL

nx; �zy=− (zR − zL)
dRL

ny (22)

where dRL is the distance between the centroids of the right (R) and left (L) cells that share
the same edge.
The average value, (20), proposed in Berm�udez et al. [21], ensures a conservative dis-

cretization of this source term.
In general, the friction term can be discretized in a semi-implicit manner to avoid numer-

ical oscillations when the roughness coe�cient is high; so that, the �nal expression for the
numerical scheme is

Un+1i =
Uni − (�t=Ai)

(∑NE
k=1 (E

∗
k · nk − S̃1−k )dsk

)n
i
+ (�t=Ai)�(S2)ni

1− (1− �)(�t=Ai)(S2)ni =Uni
(23)

in which � is the implicitness degree of the friction term discretization: �=1 corresponds
to a totally explicit treatment and �=0 to a totally implicit one. Although in Equation (23)
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velocity appears dividing the source term, it is there only for formal reasons. In practical use
the velocity is cancelled with the velocity of friction loses (Equation (2)) and division by
zero velocity is avoided.
The stability criterion adopted has followed the usual in explicit �nite volumes [25] for the

homogeneous system of equations not including source terms

�t=CFL
Ai

(
√
u2 + v2 +

√
gh)Pi

(24)

where Pi and Ai are the perimeter and area, respectively, of the computational cell i.
In practice, some restrictions on the CFL can be observed due to the non-linearity of the
system of equations or to the presence of source terms. Theoretical studies on this question
are still on development.

4. WETTING–DRYING CONDITION FOR STEADY AND UNSTEADY FLOW

The numerical technique described in Section 3 is an approximate Riemann solver adapted
to cope with zero depth cells which provides a discrete solution to the problem in all cases
independently of the local bed slope value. The technique is unable to solve correctly some
situations of still water in presence of adverse slopes as pointed out by Brufau et al. [18]. On
the other hand, the basic method can lead to important errors when simulating �ow movement
over high slopes of both positive and negative signs. In what follows, this statement will be
developed and a quanti�cation of the problematic slopes will be presented.
In �nite volume-based shallow water models, moving boundaries are considered as wet-

ting=drying fronts and hence included in the ordinary cell procedure in a through calculation
that assumes zero water depth for the dry cells. A cell is considered dry if the water depth
in the cell is below 10−6 m. A numerical technique based on the discrete form of the mass
conservation equation which guarantees steady-state at the wet=dry front was proposed by
Brufau et al. [18] to avoid di�culties in advances over adverse slopes for steady problems.
Now, in this work, a new WDC is proposed intended to be valid for steady or unsteady cases
and leading to zero numerical errors in the transient computations. The new WDC includes
the WDC for steady �ow presented by Brufau et al. [18] as a particular case.
In the upper part of Figure 2 water and bottom surface in a real situation are plotted and

at the lower part their discrete representation with constant functions z and H over the cells.
A more general alternative is adapted here, in order to avoid the numerical error, forcing the

mass balance by means of a modi�cation of the bed slope consisting on the local rede�nition
of the bottom level di�erence at the interface to ful�l the mass conservation equation. For the
sake of simplicity in the discussion, let us consider the cell interface LR where the R cell is
assumed dry and the L cell is wet with non-zero velocity in general (Figure 2 top).

hL �=0; hR =0

uL �=0; uR =0

vL �=0; vR =0

(25)
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LR

LR LR

LR

z
R

z
R

zRzR

z

zz

L =0

L

L=0

=0=0

hL h h h

hhhhL

LR

RR

=0 =0

=0=0

R

z

L

L

Figure 2. Wetting=drying fronts over adverse steep slopes in real (up) and discrete (down) representa-
tions which require a modi�cation (left) or not (right).

Following the upwind numerical scheme presented in Section 3, the averaged celerity and
velocities at LR interface are

ũ = uL

ṽ = vL

c̃ =
√
(g=2)hL;

(26)

the coe�cients � have the form

�1;3 = − hL
2

�2 =
1
c̃
[hLvLnx − hLuLny]

(27)

The eigenvalues are

�̃1 = ũ · n+ c̃= ũnx + ṽny + c̃= uLnx + vLny +
√
g
2
hL

�̃2 = ũ · n= ũnx + ṽny= uLnx + vLny

�̃3 = ũ · n − c̃= ũnx + ṽny − c̃= uLnx + vLny −
√
g
2
hL

(28)

Using (23) with �=0, and considering only the �rst component, i.e. the discretization of
the mass conservation equation, the following expression follows:

hn+1L − hnL
�t

=− 1
A

NE∑
k=1
(E∗

k · nk − S̃−
k )

1dsk (29)
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4.1. Subcritical �ow

In case of subcritical �ow, ũn¡c̃ so

�̃1¿0 ⇒ |�̃1| = �̃1

�̃3¡0 ⇒ |�̃3| = − �̃3
(30)

The numerical �ux at the LR edge is evaluated as

E∗ · n= 1
2[FRnx +GRny + FLnx +GLny − |�̃1|�1ẽ1

− |�̃2|�2ẽ2 − |�̃3|�3ẽ3] (31)

For the �rst component of the system of equations, i.e. mass equation, substituting eigen-
values, eigenvectors, coe�cients and �uxes in (31) we obtain

(E∗ · n)1 = 1
2 [(hu)Lnx + (hv)Lny − |�̃1|�1 · 1− |�̃2|�2 · 0− |�̃3|�3 · 1]

=
1
2

[
(hu)Lnx + (hv)Lny + (ũn+ c̃)

hL
2
+ (−ũn+ c̃) hL

2

]

=
hL
2
[uLnx + vLny + c̃]=

hL
2
[ũn+ c̃] (32)

The source term contribution of the bed slope to the mass equation is governed by

�1− · 1 + �2− · 0 + �3− · 1

=− 1
2c̃

[
	S2nx + 	S3ny

]
dRL

=− 1
2c̃
[gh̃�zxnx + gh̃�zyny]dRL

=
1
2c̃

[
g
hL
2
(zR − zL) n

2
x

dRL
+ g

hL
2
(zR − zL)

n2y
dRL

]
dRL

=
1
2c̃
gh̃(zR − zL)= 12 c̃(zR − zL) (33)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1047–1082



1058 P. BRUFAU, P. GARC�IA-NAVARRO AND M. E. V �AZQUEZ-CEND �ON

Therefore, the total contribution from the �uxes and bed slope source term is

(E∗1 · n − S̃1−)LR = 1
2 [hL(ũn+ c̃)− c̃(zR − zL)]


=0 if (zR − zL)= hL
(
1 +

ũn
c̃

)

¿0 if (zR − zL)¡hL
(
1 +

ũn
c̃

)

¡0 if (zR − zL)¿hL
(
1 +

ũn
c̃

)
(34)

Now, the three di�erent cases obtained are going to be studied following the point of view of
the wet cell (L). The contribution of the LR edge to updating the mass conservation equation
is

A
(
hn+1L − hnL
�t

)
LR
=
l
2
[c̃(zR − zL)− hL(ũn+ c̃)] (35)

being A the area and l the length of the wetting–drying edge of the wet cell. There are three
cases depending on the bed level variation.

(1)

(zR − zL)= (hL)LR
(
1 +

ũn
c̃

)
⇒ (hn+1L )LR = (hnL)LR (36)

There is no mass exchange between the wet and the dry cells. For still water steady
�ow, uL = vL =0, and the condition for the bed slope is reduced to (zR−zL)= hL which
recovers the WDC developed for steady problems by Brufau et al. [18] following the
work done by Berm�udez et al. [21] and taking into account that �ux and source
discretizations must balance to ensure still water steady-state at the interface LR.

(2)

(zR − zL)¡(hL)LR
(
1 +

ũn
c̃

)
⇒ (hn+1L )LR¡(hnL)LR (37)

The wet cell loses water depth (mass) which goes to the dry cell. This case corresponds
to downhill slopes (zR−zL¡0) and moderate uphill slopes. In the �rst case, water �ows
from an upper to a lower cell moved both by inertia and gravity. It must be stressed
here that there exists a threshold for the bed slope compatible with the numerical
stability for a �xed time step. In other words, there is a limit for the bed slope for a
given time step because at least all the water volume stored at the wet cell can be lost
but no more. In adverse slope cases it does not represent a problem but otherwise the
procedure can generate negative water depths in the wet cell. We shall come to this
point later.

(3)

(zR − zL)¿(hL)LR
(
1 +

ũn
c̃

)
⇒ (hn+1L )LR¿(hnL)LR (38)
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Independently of the contributions from the other cell edges, this result implies that
the wet cell is receiving water from the dry cell which is impossible because there is
no water in the dry cell. This is the case in which the bed slope must be rede�ned
locally for this time step to guarantee mass conservation in the form (zR − zL)=
(hL)LR(1 + ũn=c̃).

4.2. Supercritical �ow

In case of supercritical �ow, ũn¿c̃ so

�̃1 ¿ 0 ⇒ |�̃1|= �̃1

�̃3 ¿ 0 ⇒ |�̃3|= �̃3
(39)

The numerical �ux contribution to the mass equation in the wetting–drying edge using
again (25)–(28) is

E∗1 · n= 1
2[(hu)Lnx + (hv)Lny − |�̃1|�1 · 1− |�̃2|�2 · 0− |�̃3|�3 · 1]

=
1
2

[
(hu)Lnx + (hv)Lny + (ũn+ c̃)

hL
2
+ (ũn − c̃) hL

2

]

= hL[uLnx + vLny]= hLũn (40)

The source term contribution of the bed slope to the mass equation is governed by

�1− · 1 + �2− · 0 + �3− · 1=− 1
2c̃
[ 	S2nx + 	S3ny]dRL =0 (41)

There is no contribution of the bed slope source terms because the sign of the eigenvalues
is positive in both cases, for �1− and �3−. In this case nothing has to be done as far as
rede�ning the bed slope is concerned.
However, the supercritical case is not always free from errors. Depending on the cases,

and always near fronts is presence of bed slopes, the discretization of the mass equation
leads to negative depths arising from an excessive time step size as suggested above. The
solution proposed here to get rid of these unphysical negative depths not changing the time
step used and enforcing at the same time mass conservation is as follows: �rst, the cells
with negative depth after one time step are identi�ed and their water depth values and ve-
locity components are put to zero which adds water to the global system. Then, in order
to preserve mass conservation, the cells surrounding them are checked and the same vol-
ume of water is substracted from the neighbour having more water. Calling L a general cell
with a negative water depth and R the neighbour cell with more water, the algorithm is as
follows:

• hR is rede�ned to hR + hLAL=AR before hL is set to zero taking into account the area
since the unstructured cells are usually of di�erent size.

• hL¡0 is rede�ned as hL =0, involving an addition of a volume of water ALhL to the
system.
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Figure 3. Plan view of the geometry of the curved channel (top).
Contour plot of the bed levels (bottom).

With this new WDC and bed slope modi�cation for unsteady �ow together with the negative
depths control in the calculation we have been able to eliminate all numerical errors of this
kind in the discretization which was the objective to obtain an accurate numerical technique
in mass conservation. Controlling negative depths we intend to help the numerical method in
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Figure 4. Contour plots of water depth and velocity vectors at time: 0; 1; 2; 4; 20 and 120 s, CFL=0:9.
The last plot corresponds to steady state.

the process of drying. Sometimes the slope is very steep and the numerical method trying
to dry the slope leads to negative depth in the drying cell. It is due to the fact that only
one cell can be dried with this numerical method when in the same time step more than one
cell should be dried. It is an economic way of helping the method to dry more than one cell
without reducing the time step to very small values which would lead to large computational
time.
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Figure 4. Continued.

5. PHYSICAL DOMAIN BOUNDARY CONDITIONS

The procedure described in the previous section is applied for the ordinary cells, that is,
those representing points at the interior of the wetted domain. The boundaries of the wetted
domain are de�ned by the cells not completely surrounded by other cells. All these cells
actually require the de�nition of suitable boundary conditions in order to reach the solution
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Figure 4. Continued.

of a problem. As in any other boundary problem in computational �uid dynamics, there is �rst
a question concerning the number of physical boundary conditions required at every boundary
point. To help, the theory of characteristics in 2D tells us that, depending on both the value
of the normal velocity through the boundary

u · n= unx + vny (42)
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Figure 5. Time evolution of mass error (m3) in the case of dam break over a curved trapezoidal channel
using the unsteady WDC or the steady WDC or none.

and the local Froude number Fr=(u · n)=c, there are four possibilities as detailed in Hirsch
[26].
A second question is related to the procedure used to obtain numerical boundary conditions

[26]. In the work presented here, the idea of using a Riemann solver to calculate the �ux
at the edges of a cell has also been used at the boundaries. The variables are stored at the
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Figure 6. Contour plots of water depth and velocity vectors at time: 1; 2; 4 and 20 s, CFL=0:1.

centre of each cell and the boundary conditions are also imposed there, in boundary cells.
The value of the variables not prescribed is calculated from a usual �nite volume balance.
For this purpose, the �uxes across the edges lying on the boundary are estimated by means
of a ‘ghost’ outside cell. Usually, the ghost cell just duplicates the boundary cell (out�ow
cells). When the boundary is a solid wall, the ghost cell is a mirror cell in which the depth
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Figure 6. Continued.

of water has the same value as the boundary cell and the velocities have the opposite sign.
The procedure is the same followed with the inside cells, Riemann problem is solved across
the edges (without source terms) but after the computation, boundary conditions are imposed
over the values calculated on the boundary cells. This step is needed because computing all
the �uxes across all the edges that surround a boundary cell can make the imposed values
change.
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Figure 7. Plane view of the physical model which simulates a non-symmetric dam break
in a pool with a pyramidal obstacle.

6. DAM BREAK ON A TRAPEZOIDAL CURVED CHANNEL

In order to focus on the performance of the WDC in subcritical cases, an academic example
is proposed. It consists of a curved channel trapezoidal in cross section and closed at both
upstream and downstream �xed boundaries. The unsteady �ow is generated by a dam-break
initial condition. In order to keep subcritical �ow, the initial discontinuity in water depth is
assumed small (2:1). The �ow evolution involves wetting and drying of the channel banks
as water moves in several re�ections from the closed ends. Finally it tends to a uniform still
water state.
The geometry of the channel together with the discretization of the physical domain are

shown in Figure 3. A Manning coe�cient for roughness was used with value n=0:03. The
discretization of the friction term was done semi-implicit with �=0:5 due to the small value
of the Manning coe�cient. The solution was not sensitive to the change of the value of �
because the dominant term was the geometry not the friction. A triangular unstructured mesh
with 1395 cells was used for the computation. Upstream and downstream boundaries are solid
walls, CFL=0:9.
Water depth contours are shown in Figure 4 together with velocity vectors at time: 0, 1, 2,

4, 20 and 120 s. The last one corresponds to steady-state. If no WDC or the one for steady
�ow were used in the computations the numerical calculation produced negative depths that
were set to zero automatically. This generates mass error in both cases. Using the steady
WDC the mass error is smaller but di�erent from zero (1%) and if no WDC is applied mass
error grows in time tending to large values. In Figure 5 time evolution of mass error is shown
and proving that using the unsteady WDC together with negative depth control, error is zero
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Figure 8. Experimental data and numerical results on the time evolution of water depth during 20 s at
the measuring points S0, S1, S2, S3 and S4 located in Figure 7 in the simulation of a non-symmetric

dam break in a pool with a pyramidal obstacle.
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Figure 9. Time evolution during 20 s of mass error (m3) using the unsteady WDC or the steady WDC
or none in the simulation of a non-symmetric dam break in a pool with a pyramidal obstacle.

all the time. Mass error is computed as the di�erence between the initial volume of water and
the volume of water computed after each time step (Vtn−Vtn+�t) because there is no in�ow
or out�ow contributions. When using WDC together with no negative depth control, the mass
errors appear at t=0 s when the rarefaction wave is formed after the dam break and they
increase at around t=2s because the unsteady �ow propagates towards the dry bank being it
more dominant at that time. It can be seen in Figure 4 looking at the velocity vector pro�le
at t=2 s. At around t=2:3 s it stays almost constant suggesting that there is no additional
mass to the system because there is no relevant process of banks drying. All the computations
carried out simulating subcritical �ow, not only this example, give good results when using
the unsteady WDC presented here. As we do not have any test with analytical solution to
compare with, a simulation of the same test case has been carried out with CFL=0:1 and the
results at t=1; 2; 4 and 20 s are shown in Figure 6 demonstrating that the solution obtained
is the same.

7. NON-SYMMETRIC DAM BREAK IN A POOL WITH A PYRAMIDAL OBSTACLE

The physical model was built at the Hydraulic Lab. of CITEEC (Spain) under the supervision
of J. Puertas. The model consists of a closed pool separated in two parts by a solid wall
where a gate (dam) is located in a non-symmetric place (Figure 7). Details of the test can
be found in Brufau et al. [18].
The experimental–numerical comparison corresponds to 0:5=0:1 m initial conditions. In

Figure 8 experimental data and numerical results are compared on the time evolution of
water depth during 20 s at the gauging points: S0, S1, S2, S3 and S4 around the pyramidal
obstacle to check the wetting=drying condition WDC described here, the steady WDC and no
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Figure 10. Unstructured mesh used in the computation and topography
of the valley in the Malpasset dam failure.

use of WDC. A comparison of the time evolution of mass error using the WDC proposed
here and the one used in Brufau et al. [18] for steady cases is shown in Figure 9.

8. MALPASSET DAM FAILURE

In 1959 the Malpasset arc dam near Frejus (France) broke almost instantaneously releasing
an amount of about 48 million m3 of water and caused 421 casualties [27, 28]. The real
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Figure 11. Location of the police (top) and physical model gauge points and
transformers (bottom) on the Malpasset valley.

topography of the valley is shown in Figure 10. The reservoir is located on the left and the
dam is at the end of the reservoir. On the �rst reach, the valley is rather sunken with two
narrow bends. On the second reach it widens as some rivers and tributaries join the river.
Further downstream it becomes narrow again before large bends and eventually reaching
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Figure 12. Comparison of numerical results with real data and physical
model experiments can be observed.

a �at plain and �nally it ends at the sea. The overall dimensions of the study reach are
17 500 m× 9000 m. This study was proposed by EDF in the frame of a European project
(CADAM).
The police (gauge points labelled with P) collected detailed observations of the �ood wave

propagation and its maximum elevations on the right and left banks of the valley. Three
transformers (A, B and C) were destroyed by the wave and the exact time of these shutdowns
is known. In 1964 a 1

400 physical model was constructed at EDF-LNH (Chatou) in order to
get a better understanding of the �ooding process (gauge points labelled with G at the centre
of the valley). The maximum free surface elevation at these gauges was measured and is in
good agreement with the observed high water marks [27].
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Figure 13. Contour water depths, velocity vectors and free surface at time: t=0; 1; 3; 13; 25 and 33 min.

An unstructured triangular mesh has been used with 26 000 cells (Figure 10) and the time
step is limited by CFL=0:9. Manning coe�cient for friction is 0.033. The parameter used
for friction discretization is �=0:5. The only open boundary is the sea with constant water
level (0 m). Therefore, boundary conditions are free �ow. For the initial conditions, water
level is considered equal to 100 m in the reservoir and dry bed (0 m) in the river valley.
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Figure 13. Continued.

Figure 11 shows the physical domain used for the numerical simulation where the gauge
points (police and physical model) and transformers are located. The bed level is represented
in the same �gure with a contour plot. Comparison of numerical results with real data and
physical model experiments can be observed referred to the arrival time to the transformers,
arrival time to the gauge points at the physical model and maximum water level in terms of
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Figure 13. Continued.

free surface level at the physical model gauge points (Figure 12). Since transformer A was
in the bottom of the valley, the shutdown here is the wave arrival time. For the other two
transformers (B and C) the shutdown time is probably somewhere between the wave arrival
time and the time of peak water level. Comparison of the maximum water level at the points
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Figure 13. Continued.

measured by the police with the numerical results is shown in Figure 12. Snapshots at initial
time (t=0 s), t=3, 13, 25 and 33 min of the free surface over the real topography of the
valley are shown in Figure 13. Figure 14 represents the time evolution of the mass error in
di�erent situations. Mass error has been computed as the di�erence between the initial volume
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Figure 13. Continued.

of water and the one obtained after the computation was �nished. In the �gures, mass loses
when there is no control of negative depths (see Section 4) can be appreciated. The use or
not of the WDC does not make any di�erence in the mass error, which remains zero in both
cases. This is because of the supercritical character of the �ow and the WDC is mainly not
applied in this case.
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Figure 13. Continued.

Now, in Figures 15 and 16 we are going to analyse what happens with the water depth
at the measured points (transformers, gauge and police) using or not the WDC and using or
not the control of water depths. We can observe from the �gures that in case the WDC is
not used but the negative depths are controlled, corresponding to zero mass loses, there are
small di�erences in water depth and time of arrival of the wave front to the transformers,
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Figure 14. Time evolution of mass error (m3) in the computation using or not
the WDC and controlling or not negative depths.

police and gauge points (Figure 15). As expected, the di�erences are signi�cant in the banks
(police points) but meaningless in the centre of the river (gauge points). Only comparisons
in a few upstream points are presented. In case the WDC is used but there is no control over
the negative water depths which corresponds to a great amount of mass loses, comparison
between time evolution of water depths in several points can be observed in Figure 16. As
seen in Figure 14 a great amount of volume of water is lost in the computation when the
negative depths are not controlled so there is no water depth in the transformers gauge or
police points. The mass error has been computed as in the other test case.

9. CONCLUSIONS

An explicit �nite volume upwind scheme has been used to solve the 2D shallow water system
of equations. This numerical technique has been applied to the simulation of a �ood wave
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Figure 15. Comparison of numerical results using or not the WDC and controlling negative water depths
in the transformers, police and gauge points.

produced by the Malpasset dam break in France. Source terms (bed variations and friction)
are determinant in the solution of �ows in complex geometries. There is an extra numerical
work in the representation of the advancing and recessing front over inclined bed. The results
have demonstrated the capability of the numerical scheme to simulate this kind of problems
involving unsteady �ows in complex geometries and solving appropriately the arrival time
of the advancing front as well as the water depth levels. It can be observed that the initial
volume of water has been conserved along the computation. Upwinding bed slope terms and
wetting–drying condition for unsteady �ow combined with the classical upwind scheme for
�uxes give a fully conservative numerical technique without numerical errors. The wetting–
drying condition for unsteady �ow gives zero mass error which demonstrates the e�ectiveness

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1047–1082



WDC IN SHALLOW FLOWS 1081

t (s)

h
(m

)

0 500 1000 1500 2000
0

5

10

15

Transf A WDC+h neg
Transf A WDC no h neg
Transf B WDC+h neg
Transf B WDC no h neg
Transf C WDC+h neg
Transf C WDC no h neg

t (s)

h
(m

)

0 500 1000 1500 2000
0

5

10

15

20

25

30

35
P1 WDC+h neg
P1 WDC no h neg
P3 WDC+h neg
P3 WDC no h neg
P4 WDC+h neg
P4 WDC no h neg

t (s)

h
(m

)

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

45
G6 WDC+h neg
G6 WDC no h neg
G8 WDC+h neg
G8 WDC no h neg
G10 WDC+h neg
G10 WDC no h neg

Figure 16. Comparison of numerical results using the WDC and controlling or not negative water depths
in the transformers, police and gauge points.

of the numerical scheme to simulate real events. Numerical techniques developed in the last
decade to solve realistic problems do not always take in care source terms discretization or the
treatment of wetting–drying fronts. This work completes a well-known numerical technique
conserving the total amount of water which is a quality control of the numerical solution of
maximum interest in Hydraulic Engineering.
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